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EXECUTIVE SUMMARY

VERIFICATION OF THE ENHANCED
INTEGRATED CLIMATIC MODULE

SOIL SUBGRADE INPUT PARAMETERS
IN THE MEPDG

Introduction

At the beginning of 2009, the Indiana Department of Trans-

portation (INDOT) adopted the Mechanistic-Empirical Pavement

Design Guide (MEPDG) method to study long-term pavement

performance. The implementation of this new design approach led

to difficulties for the pavement to pass the INDOT performance

criteria: in particular, pavement roughness (International Rough-

ness Index (IRI)) for hot-mixed asphalt (HMA) and faulting for

jointed plain concrete pavement (JPCP) when A-6 or A-7-6 soils

were considered as foundation soils.

This study focuses on investigating the influence of the soil input

parameters in the Enhanced Integrated Climatic Model (EICM)

on the prediction of the soil resilient modulus (MR) in the

MEPDG. A total of four sites located around the state of Indiana

are used to propose/validate the observations and conclusions

made in the research.

Findings

An investigation of the influence of EICM input parameters

and other factors controlling the pavement performance led to the

following conclusions:

N For the climatic conditions existing in Indiana, the location

of the water table does not affect the value that the MEPDG

uses for the subgrade resilient modulus. For A-7-6 soils, the

degree of saturation throughout the pavement design life will

always be above the optimal condition. Therefore, there will

always be a reduction of the resilient modulus. For a water

table located between 2 ft and 100 ft below the surface, the

MR reduction ranges between 36% and 45%, with the maxi-

mum reduction (45%) observed when the water table is

located at 2 ft (saturated condition).

N The gravimetric water content is the most influential param-

eter on the EICM since it is directly related to the optimum

degree of saturation of the subgrade soil.

N For A-7-6 soils, the overall deformation of the pavement

structure is controlled by the subgrade (,80% of total defor-

mation). This is due to its relatively low stiffness compared to

that of a lime or cement treated layer and of the asphalt layer.

N The treated layer plays an important role in the overall per-

formance of the pavement. It controls the amount of stress

and deformation in the foundation soil.

As part of this study, an assessment of the current subgrade

modeling approaches was also conducted. The following observa-

tions were drawn:

N Current practice appears to produce a double reduction

of the subgrade modulus used for pavement design, since

the MR values provided as input to MEPDG are not those

obtained at optimum moisture content, but are reduced

by the INDOT Geotechnical Office to account for the site

conditions. A further reduction in MR is performed within

the EICM to account for the moisture conditions at the site.

N Laboratory measurements of the MR for A-7-6 soils obtained

at optimum moisture content provide average values rang-

ing between 10,000 psi and 16,000 psi (e.g., see project

SPR-3710 (Park, 2015) (SR-37, Mitchell, Lawrence County,

Vincennes)). These values are higher than the reference

value of 3,250 psi provided by the INDOT Geotechnical

Office. Hence, it is necessary to define which condition (i.e.,

at optimum or reduced) is represented by the value of the

resilient modulus given by the Geotechnical Office and/or

used as input in the software.

N Current approaches for modeling treated soils neglect the

changes in the nature of the soils that arise with treatment

(i.e., an A-7-6 soil continues to be modeled as an A-7-6 soil,

albeit with a higher modulus, and thus is susceptible to the

same reduction in stiffness). Moreover, the values of MR

typically employed for treated A-6 and A-7-6 soils (,9,000

psi, provided by the INDOT Geotechnical Office) fall on

the low end of the range reported in the literature (e.g.,

AASHTO, 2008).

Implementation

Three approaches for modeling the subgrade can be adopted:

1. Enable the EICM module and use as input a value of MR that

represents the optimum condition. This value will then be

reduced within the EICM to reflect actual site conditions.

2. Disable the EICM module and introduce an input MR that

already accounts for moisture changes and reflects the in situ

conditions.

3. Disable the EICM module and introduce an input MR with

seasonal reduction that reflects the in situ conditions.

Changes of the subgrade resilient modulus caused by the sea-

sonal variations of the water table, modeled by placing it at 2, 4, 6,

and 9 ft below the pavement surface, resulted in an average reduc-

tion of ,43%, which is nearly constant throughout the four

seasons (winter, spring, summer, and fall). Thus, it appears that

the third approach (i.e., using seasonal reduction) is less mean-

ingful in Indiana and the first two approaches seem more

practical.

Given that the fines content and plasticity of a chemically treated

soil tend to decrease with treatment, the treated layer should be

modeled with PI and P200 values that are representative of the

soil after treatment. Moreover, the MR input into the MEPDG

for the treated layer should be a constant (i.e., not affected by

EICM).
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1. INTRODUCTION: BACKGROUND AND
PROBLEM STATEMENT

At the beginning of 2009, INDOT adopted the
Mechanistic-Empirical Pavement Design Guide (MEPDG)
method, which is a new design guide based on the FHWA
Long Term Pavement Performance (LTTP). The new
pavement design procedures and pavement design
input parameters included in the guide differ from
those in the AASHTO 1993 Pavement Design Guide,
which was based on the AASTHO Road Test con-
ducted in the 1950s. The implemented method requires
the input of design parameters that can reflect the
actual conditions in the field to better predict pave-
ment performance over time, based on different criteria
including roughness, rutting, faulting and fatigue cracks.

With the implementation of this new design approach,
difficulties have been encountered to pass the INDOT
performance criteria: in particular, pavement rough-
ness (International Roughness Index (IRI)) for hot-
mixed asphalt (HMA) and faulting for jointed plain
concrete pavement (JPCP) when A-6 or A-7-6 soils
were considered as subgrade. Given that the pave-
ment performance is sensitive to soil stiffness (resilient
modulus), it is necessary to re-verify the predictions
of resilient modulus in relation to the soil input param-
eters in the Enhanced Integrated Climatic Model
(EICM).

2. RESEARCH OBJECTIVES

The objectives of this research project are geared
toward finding a practical solution in INDOT pavement
design procedures to effectively determine the influence
of the EICM input parameters and make necessary
adjustments that can accurately predict the soil resilient
modulus in MEPDG. The ultimate goal of the research
is to create guidelines for selecting values of soil sub-
grade input parameters in the EICM module in MEPDG.
Within this broad scope, the specific objectives of the
work conducted as part of this research project are to:

a. Determine the influence of EICM soil input parameters
on the ‘‘predicted’’ month-to-month soil resilient modulus in
MEPDG over the pavement design life, for A-6 and
A-7-6 soils (fine-grained soils) in high truck traffic cases.

b. Propose necessary adjustments to soil input parameters
if needed.

c. Provide guidelines for the selection of subgrade values to
be introduced in the model.

3. ACTIVITIES

The research objectives outlined above are pursued
through the following activities:

N Study of the soil-water characteristic curves (SWCC)
in MEPDG and assessment of the influence of the
water table depth on the ‘‘predicted’’ month-to-month
soil resilient modulus over the pavement design life (see
Section 4.4.1);

N Parametric study to determine and rank the influence

of the soil input parameters in the EICM module (see

Section 4.4.2);

N Investigation of the influence of the subgrade input

resilient modulus (see Section 4.4.3);

N Investigation of the influence of the treated layer input

resilient modulus and material type (the PI and P200 gener-

ally decrease due to soil treatment) (see Section 4.4.4);

N Validation of the observations and conclusions drawn

from the research through analysis of case studies of

different sites in Indiana (see Section 5).

4. RESULTS AND DISCUSSION

This section presents the results of the long-term
pavement performance analysis conducted using MEPDG
and the influence of each input parameter on the pave-
ment design life. Section 4.1 describes the pavement
model that was used for this study. Section 4.2 presents
the deformation of pavement structure and the contri-
bution of each layer on the total deformation. The
MEPDG pavement layers discretization is shown in
Section 4.3. Section 4.4 discusses the different factors
affecting the pavement performance in MEPDG.

4.1 Pavement Model

The pavement structure used for this study was
based on real data obtained from the Fort Wayne I-469
project, which has the following characteristics:

N Design life: 19 years

N Pavement: Flexible-HMA

N Reliability level: 90%

N Climate station data: Fort Wayne, IN

N Water table depth: 2-ft

N Pavement structure: see Table 4.1

The subgrade resilient modulus was provided by the
INDOT geotechnical office.

4.2 Deformation of Pavement Structure

The distribution of the average rutting per pavement
layer obtained using the MEPDG method is presented
in Figure 4.1. As it can be seen, the subgrade layer or
foundation soil controls the overall deformation of the
pavement structure (80% of total deformation).

4.3 MEPDG Pavement Layers Discretization

In order to analyze the pavement structure and predict
the pavement performance over its design life, MEPDG
discretizes the pavement layers into several sub-layers
(referred to as ‘‘nodes’’) based on each layer type
and thickness. This is summarized in Figure 4.2 and
Table 4.2, where the three top asphalt layers are
divided into 3, 2, and 2 nodes respectively. The treated
layer is modeled with one node, whereas the subgrade
is divided in 4 nodes.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/08 1



4.4 Factors Affecting the Pavement Performance in MEPDG

There are several factors that influence the overall
performance of the pavement structure in MEPDG,
such as the location of the water table, the input param-
eters for the subgrade, and the input parameters for the
treated layer. This section addresses these factors and

presents a parametric study to assess the influence of
soil input parameters in the EICM Module.

4.4.1 Water Table Depth

The soil-water characteristic curve (SWCC) describes
the relationship between the degree of saturation and
the soil matric suction. The latter is determined based on
two possible conditions according to the NCHRP 9-23
project. If the water table is above 9-ft, the matric suction
is determined by the position of the phreatic level. When
the water table is below 9-ft, the matric suction is defined
by the Thornthwhaite Moisture Index (TMI). The TMI
relates the amount of precipitation and the potential evapo-
transpiration of the soil as follows:

TMI~75
P

PE
{1

� �
z10 ð4:1Þ

where P 5 precipitation and PE 5 potential evapo-
transpiration of water.

For a given P200 (i.e., the percentage of material pas-
sing the U.S. No. 200 sieve) and plasticity index (PI),
the matric suction, h, can be found using the following
equation:

h~a e

b

TM1zc

� �
zd

� �
ð4:2Þ

where the regression constants a, b, c, and d are sum-
marized in Table 4.3.

TABLE 4.1
Pavement structure used in MEPDG.

Layer # Layer Type Material Type Thickness (in) Resilient Modulus (psi)

1 Flexible Asphalt concrete 1.5 –

2 Flexible Asphalt concrete 2.5 –

3 Flexible Asphalt concrete 10.0 –

4 Subgrade A-7-6 (treated) 14.0 9,000

5 Subgrade A-7-6 Semi-infinite 3,250

Figure 4.1 Average deformation per pavement layer.

Figure 4.2 MEPDG pavement layers discretization.

TABLE 4.2
MEPDG pavement layers discretization.

Label Layer # Node # Layer Type Thickness (in)

AC 1 (1-3) 1 1-3 Asphalt concrete 1.5

AC 2 (4-5) 2 4-5 Asphalt concrete 2.5

AC 3 (6-7) 3 6-7 Asphalt concrete 10

NSG 4 (8) 4 8 Treated soil 14

NSG 5 (9) 5 9 Foundation soil 24.1

NSG 5 (10) 5 10 Foundation soil 24.1

NSG 5 (11) 5 11 Foundation soil 24.1

NSG 5 (12) 5 12 Foundation soil 253.5

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/08



The subgrade used in this study is A-7-6 soil with
wPI (the product of P200 as a decimal and PI as a
percentage) 5 23.7. Using the corresponding regression
constants from Table 4.3, the relationship between the
matric suction and the TMI is obtained and plotted in
Figure 4.3.

Given that the soil matric suction depends on the
location of the water table, a total of six scenarios with
different water table locations were evaluated. The
scenarios included the following locations of the water
table determined from the surface of the pavement: 2-ft,
4-ft, 6-ft, 12-ft, 48-ft and 100-ft. The month-to-month
resilient modulus values predicted in MEPDG over the
pavement design life for each scenario are presented in
Figures 4.4 (a-f). Figure 4.4a shows that the resilient
modulus of all the subgrade sub-layers (described in
Table 4.2) is constant when the water table is located
2-ft below the surface since the degree of saturation is
100%. For this scenario the modulus drops from the
initial 3250 psi to 1804 psi, representing a reduction of
45%. For the scenarios where the water table is at 4-ft

and 6-ft, small fluctuations in resilient modulus are
observed, as shown in Figures 4.4b and 4.4c. However,
in both cases there is a significant reduction of the
resilient modulus, similar in magnitude to the previous
case.

For the water table below 9-ft (i.e., 12-ft, 48-ft and
100-ft), the variation in the resilient modulus of the
subgrade sublayers is similar. The modulus oscillates
between 1,800 and 2,670 psi. The three cases show a
similar trend because the matric suction is determined
by the TMI or the temperature profile of the soil.

The results in Figure 4.4 demonstrate that the loca-
tion of the water table has a small influence on the
resilient modulus over time. The observed behavior is
due to the degree of saturation that is determined by the
SWCC. As illustrated in Figure 4.5, for matric suction
values between 0.1 kPa and approximately 1,160 kPa, the
degree of saturation for A-7-6 soils is greater than that
corresponding to the optimum condition. The matric
suction values derived for the depths of the water table
examined in this analysis all fall in this range.

Figure 4.6 presents a summary of the values of the
degree of saturation for each of the subgrade sublayers
(described in Table 4.2) and for the different locations
of the water table. As shown in the figure, regardless of
the location of the water table, the degree of saturation
(.95%) is above the optimum condition and thus there
is a reduction in the resilient modulus.

The resilient modulus-moisture model used in MEPDG
is defined by the following equation:

log MR

MRopt
~az b{a

1zEXP ln{b
a

zkm S{Soptð Þð Þ ð4:3Þ

where a 5 -0.5934, b 5 0.4, and km 5 6.1324 for fine-
grained material (e.g., A-7-6).

This relationship is shown in Figure 4.7. An increase
in the stiffness (MR), relative to the optimum condition
(MRopt), occurs when S , Sopt and a reduction occurs

TABLE 4.3
Regression constants for TMI-P200/wPI model, subgrade
materials.

P200 or wPI* a b c d R2

P200 5 10 0.300 419.07 133.45 15.00 .0.99

P200 5 50 /

wPI # 0.5
0.300 521.50 137.30 16.00 .0.99

wPI 5 5 0.300 663.50 142.50 17.50 .0.99

wPI 5 10 0.300 801.00 147.60 25.00 .0.99

wPI 5 20 0.300 975.00 152.50 32.00 .0.99

wPI 5 50 0.300 1171.20 157.50 27.80 .0.99

*wPI 5 the product of P200 as a decimal and PI as a percentage.

Figure 4.3 TMI-P200/wPI model for A-7-6 subgrade soil (wPI523.73).

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/08 3



when S . Sopt. For A-7-6 subgrade soils, there will
always be reduction in the resilient modulus since the
degree of saturation (.95%) will always be above the
optimal condition (82.7%) regardless of the location of
the water table.

4.4.2 Soil Input Parameters in the EICM Module:
Parametric Study

A parametric study is conducted to assess the
influence of soil input parameters in the EICM module.

The study includes eight scenarios, all with a constant
water table located 2-ft below the pavement surface.
Table 4.4 lists the input parameters used for each case
analyzed. The cells highlighted in gray indicate the
values that change for each scenario while the rest
remain constant.

As a point of reference, the default values for A-7-6
soils provided by the EICM are:

cdmax
~97:7pcf

Figure 4.4 Variation of the subgrade resilient modulus with time for a water table located at (a) 2 ft, (b) 4 ft, (c) 6 ft, (d) 12 ft,
(e) 48 ft, and (f) 100 ft.

4 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/08



Gs~2:70

ksat~8:9|10{6ft=hr

wopt~22:2%

Sopt~82:7%

As one can see from Table 4.4, the parametric
analysis explores the effects of changes of the key input
parameters over a wide range of possible values.

The results of the parametric study are summarized
in Table 4.5. It can be concluded that the soil input
parameter that exerts the largest influence on the resili-
ent modulus, IRI reliability, and average rutting is the
optimum gravimetric water content. This is due to the

fact that the optimum gravimetric water content is
directly related to the optimum degree of saturation
(as shown in Equations 4.4 and 4.5), which has a
large influence on the resilient modulus-moisture model
(Equation 4.3).

hopt~
woptcdmax

cwater

ð4:4Þ

Sopt~
hopt

1{
cdmax

cwaterGs

ð4:5Þ

4.4.3 Subgrade: Input Resilient Modulus

The input subgrade resilient modulus has a large
influence on the pavement performance. Current prac-
tice appears to produce a double reduction of the sub-
grade modulus since the input MR used in the program
is not the value obtained at optimum moisture, but
reduced by the INDOT Geotechnical office to account
for actual soil conditions (in general field compaction
is performed ,2% above optimum water content).
However, the reduction in MR to account for the
moisture conditions at the site is automatically per-
formed by the model when using the climatic model
(EICM).

In order to address this issue, three approaches for
modeling the subgrade can be adopted: (1) enabling the
EICM module and using as input a value of MR that
represents the optimum condition (e.g., 5,855 psi). This
value will then be reduced within the EICM to reflect
the actual site conditions (to ,3,250 psi); (2) disabling
the EICM module and introducing an input MR that
already accounts for moisture changes and reflects the
in situ conditions (e.g., 3,250 psi); or (3) disabling the
EICM module and introducing an input MR with
seasonal reduction that reflects the in situ conditions
(note that for water table located at 2 ft, the subgrade is

Figure 4.5 SWCC for A-7-6 subgrade soil.

Figure 4.6 Average degree of saturation for subgrade’s
sublayers.
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Figure 4.7 Resilient modulus-moisture model used in MEPDG.

TABLE 4.4
Parametric study scenarios.

Scenario cdmax (pcf) Gs ksat (ft/hr) wopt(%) Sopt (%)

1 96.7 2.70 8.9E-6 22.2 80.7

2 98.7 2.70 8.9E-6 22.2 84.8

3 97.7 2.65 8.9E-6 22.2 84.9

4 97.7 2.75 8.9E-6 22.2 80.7

5 97.7 2.70 8.9E-5 22.2 82.7

6 97.7 2.70 8.9E-7 22.2 82.7

7 97.7 2.70 8.9E-6 20.2 75.3

8 97.7 2.70 8.9E-6 24.2 90.2

TABLE 4.5
Results from the parametric study.

Scenario Sopt MR_opt (psi) MR (psi) MR / MR_opt IRI Reliability (%) Average Rutting (in)

1 80.7 3250 1697 0.522 82.49 0.44

2 84.8 3250 1924 0.592 83.40 0.42

3 84.9 3250 1937 0.596 83.46 0.42

4 80.7 3250 1693 0.521 82.47 0.44

5 82.7 3250 1804 0.555 82.94 0.43

6 82.7 3250 1804 0.555 82.94 0.43

7 75.3 3250 1453 0.447 80.18 0.49

8 90.2 3250 2311 0.711 85.48 0.37
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always fully saturated resulting in a constant 45%

reduction in MR throughout the year). Note that a
reduction in the subgrade MR due to seasonal variation
of the water table located at 2, 4, 6, and 9 ft results in an
average reduction of ,43% that is almost constant
during the four seasons (winter, spring, summer, and
fall). Hence, it appears that the third approach, i.e.,
using seasonal reduction, is less meaningful in Indiana
and only the first two approaches should be adopted.

Table 4.6 shows the results of three different scenarios:
Scenario 1 corresponds to the ‘‘double reduction’’ of
the subgrade MR, whereas Scenarios 2 and 3 corre-
spond to approaches 1 and 2 proposed above, which
are intended to reflect actual in situ conditions. Both
approaches result in an ,8 in/mi decrease in the IRI or
,2 additional years before failure.

4.4.4 Treated Layer: Input Resilient Modulus and
Material Type

An additional issue is the handling within the model
of a treated subgrade. All the runs conducted in this
research show that the limiting criterion controlling the

pavement design is the roughness (IRI); hence it is
essential to consider all the parameters affecting IRI
(5 f{…, PI, MR, …}).

Many researchers (e.g., Jung & Bobet, 2008) showed
that the PI and P200 generally decrease due to soil treat-
ment. This is illustrated in Figure 4.8 and Table 4.7,
where lime-treated soils from different sites were reported
and the soil type changed due to the decrease of PI
and P200 after treatment. Thus, it is not sufficient to
model the treated layer by only increasing the MR but
representative values of PI and P200 should be also
assigned.

In order to illustrate the influence of the treated layer
and the importance of the input parameters mentioned
above, five different scenarios were investigated using
the same pavement structure described in section 4.1.
The MR used for the A-7-6 subgrade is 5,855 psi (which
is reduced by the EICM to 3,250 psi). The results are
summarized in Table 4.8.

Scenario 0 corresponds to a 140 treated layer with the
same properties as the subgrade, except for the input
MR of 9,000 psi, which is reduced by EICM to ,5,100
psi. Scenarios 1–4 correspond to a 140 treated layer with

TABLE 4.6
Influence of subgrade resilient modulus.

Scenario Analysis Type MR_opt (psi) MR (psi) MR/MR_opt

IRI at

Reliability

(in/mi) Failure year

Final Total

Rutting (in)

1 ICM inputs 3250 1804 0.555 170.57 16.1 0.596

2 ICM inputs 5855 3250 0.555 162.77 18.3 0.444

3 Fixed value 3250 3250 1.000 162.52 18.3 0.439

Figure 4.8 Natural versus lime-treated soil (Jung & Bobet, 2008).

TABLE 4.7
Soil classification for natural and treated soils (Jung & Bobet, 2008).

Site (1) Site (2) Site (3) Site (4) Site (5) Site (6)

Soil Type
Natural A-7-5 A-4 A-7-6 A-6 A-6 A-6

Treated A-1-b A-2-4 A-2-4 A-1-b A-4 A-4
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fixed MR of 9,000 psi and varying the material type,
i.e., A-7-6, A-7-5, A-6, and A-5 (reflecting the reduction
in PI and P200 associated with the treatment).

Fixing the MR of the treated layer to 9,000 psi (cases
0–1) leads to a slight improvement in pavement per-
formance. However, varying the material type of the
140 treated layer from A-7-6 to A-5 results in a ,3 in/mi
decrease in the IRI and the pavement passing the
performance criteria.

5. CASE STUDIES

Figure 5.1 shows the location of four different sites in
Indiana that are used to propose/validate the observa-
tions and conclusions made in this research: (1) I-469,
Fort Wayne; (2) CRN50E, Kokomo; (3) SR46, Terre
Haute; and (4) I-65, Southport. The first site is used as a
source of the input data for all the analysis reported in
this research and summarized in the previous sections.
The latter three sites are used to validate those conclu-
sions, and will be described in this section. Table 5.1
summarizes the locations of the sites as well as the road
names, and Table 5.2 presents the analysis parameters
and the traffic data used for each site.

All three sites show a reduction of ,45-55% of the
subgrade MR due to the EICM to account for the
moisture conditions at the site, which is consistent with
the observation described in 4.4.1 and 4.4.3. Therefore,
it is crucial to use input parameters that are represen-
tative of the material type and the site conditions.

5.1 Site 2: CRN50E, Kokomo

Table 5.3 summarizes the pavement structure used
for this case, which is based on actual data obtained
from the Kokomo CRN50E project. The subgrade resili-
ent modulus was obtained from laboratory measure-
ments obtained at optimum conditions from Project
SPR-3710 (Park, 2015). The values ranged between
3,400 psi and 13,600 psi; the 5th percentile, average,
and 95th percentile are used for analysis.

As described in section 4.4.3, the input subgrade
resilient modulus has a large influence on the pavement
performance. This is investigated by analyzing six dif-
ferent scenarios. The results are summarized in Table 5.4.
Scenarios 1, 3, and 5 correspond to a fixed value of MR

obtained from Project SPR-3710 (Park, 2015) as the
5th percentile, average, and 95th percentile, respectively.
Scenarios 2, 4, and 6 correspond to the same values
of MR, which are then reduced by the EICM module

TABLE 4.8
Influence of treated layer resilient modulus and material type.

Scenario Material Type P200 (%) PI (%) LL (%) Sopt (%)

IRI at Reliability

(in/mi) Failure Year

Final Total

Rutting (in)

0 A-7-6 79.1 30 51 84.6 163.07 18.2 0.449

1 A-7-6 79.1 30 51 84.6 162.77 18.3 0.444

2 A-7-5 70.5 24 57 84.8 162.62 18.4 0.445

3 A-6 63.2 16 33 83.8 161.63 18.6 0.448

4 A-5 54.3 5 45 75.7 160 – 0.455

Figure 5.1 Case studies in Indiana.

TABLE 5.1
Case studies in Indiana.

Site # Road Name Location District

1 I-469 Fort Wayne, IN Fort Wayne

2 CRN50E Kokomo, Howard County, IN Greenfield

3 SR46 Terre Haute, Vigo County, IN Crawfordsville

4 I-65 Southport, Marion County, IN Greenfield
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(the module reduces the MR by about 53%). Scenarios
2, 4, and 6 result in an increase of the IRI of at least
12 in/mi. Note that for all six scenarios, the pavement
did not fail. The reason is that the road is a county
road with very low traffic and low reliability (70%).

5.2 Site 3: SR46, Terre Haute

Table 5.5 summarizes the pavement structure used
for this case, which is based on data obtained from the

Terre Haute SR46 project. The subgrade resilient modulus
was obtained from laboratory measurements obtained
at optimum water content, from Project SPR-3710
(Park, 2015). The values range between 8,600 psi and
16,300 psi; the 5th percentile, average, and 95th per-
centile are used for the analysis.

The influence of the EICM module on the input
subgrade resilient modulus is investigated by analyzing
six different scenarios. The results are summarized in
Table 5.6. Scenarios 1, 3, and 5 correspond to a fixed

TABLE 5.2
Analysis parameters and traffic data.

Site 2 Site 3 Site 4

Design life (yrs) 20 20 20

Type of road Local Collector urban Freeway

Terminal IRI (in/mile) [Reliability, %] 200 [70%] 190 [80%] 160 [90%]

AC Bottom-Up Cracking, Alligator Cracking (% lane area) [Reliability, %] 35 [70%] 30 [80%] 10 [90%]

AC Thermal Fracture (ft/mi/lane) [Reliability, %] 500 [70%] 500 [80%] 500 [90%]

Permanent Deformation – AC only (in) [Reliability, %] 0.4 [70%] 0.4 [80%] 0.4 [90%]

Initial two-way AADTT 50 1,145 27,800

# of lanes in design direction 1 1 3

Operational speed (mph) 45 55 55

Linear growth (%) 2.0 1.3 1.3

Water table depth (ft) 5.0 5.0 4.5

TABLE 5.3
Pavement structure used in MEPDG for site 2.

Layer # Layer Type Material Type Thickness (in) Resilient Modulus (psi)

1 Flexible Asphalt concrete 1.5 –

2 Flexible Asphalt concrete 2.5 –

3 Granular base Crushed stones 6.0 25,000

4 Subgrade A-4 Semi-infinite 3,400 – 13,600

TABLE 5.4
Influence of subgrade resilient modulus for site 2.

#

Analysis

Type

MR _opt

(psi)

MR

(psi) MR/MR_opt

IRI

Reliability

(%)

IRI at

Reliability

(in/mi)

Failure

Year

Final

Total

Rutting (in)

1 Fixed value 3400 3400 1.000 96.9 152.3 – 0.700

2 ICM inputs 3400 1602 0.471 88.3 174.1 – 1.167

3 Fixed value 7600 7600 1.000 99.1 138.6 – 0.419

4 ICM inputs 7600 3581 0.471 97.2 150.7 – 0.672

5 Fixed value 13600 13600 1.000 99.6 132.7 – 0.303

6 ICM inputs 13600 6407 0.471 98.9 140.6 – 0.462
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value of MR obtained from Project SPR-3710 (Park,
2015) as the 5th percentile, average, and 95th percentile,
respectively. Scenarios 2, 4, and 6 correspond to the
same values of MR but allowing the EICM module
to decrease them. This results in a reduction of MR of
about 45% (e.g., compare cases 3 and 4) and in an
increase of the IRI of about 4 in/mi. Note that for all six
scenarios, the pavement did not fail. As with the
previous case, the result is due to the fact that the road
is a State road with very low traffic and low reliability
(80%).

5.3 Site 4: I-65, Southport

Table 5.7 summarizes the pavement structure used
for this case, which is based on data obtained from the
Southport I-65 project. The subgrade resilient modulus
was provided by the INDOT geotechnical office.

For this case, the influence of the EICM module on
the input subgrade resilient modulus is investigated by
analyzing six different scenarios. The results are sum-
marized in Table 5.8. Scenario 1 corresponds to the
‘‘double reduction’’ of the subgrade MR (described in
section 4.4.3). The subgrade MR 5 3,000 psi, provided
by the INDOT geotechnical office, represents the value
that corresponds to the moisture conditions at the site.
Hence, activating the EICM module will result into a
double reduction (Scenario 1). Scenarios 2 and 3 cor-
respond to approaches 1 and 2 proposed in section 4.4.3,
which avoid the double reduction of MR and reflect
the in situ conditions. Both approaches resulted in a
,11 in/mi decrease in the IRI or ,3.3 additional years
before failure. Scenarios 4 – 6 show the input subgrade
MR needed to sustain a longer lifespan: 5,500 psi for
18 years, 8,500 psi for 19 years, and 10,000 psi for
19.4 years.

TABLE 5.5
Pavement structure used in MEPDG for site 3.

Layer # Layer Type Material Type Thickness (in) Resilient Modulus (psi)

1 Flexible Asphalt concrete 1.5 –

2 Flexible Asphalt concrete 2.5 –

3 Flexible Asphalt concrete 8.6 –

4 Subgrade A-6 (treated) 12.0 9,000

5 Subgrade A-6 Semi-infinite 8,600 – 16,300

TABLE 5.6
Influence of subgrade resilient modulus for site 3.

#

Analysis

Type MR _opt (psi) MR (psi) MR/MR_opt

IRI

Reliability

(%)

IRI

at Reliability

(in/mi) Failure Year

Final

Total Rutting

(in)

1 Fixed value 1400 1400 1.000 92.5 168.5 – 0.841

2 ICM inputs 1400 778 0.556 83.6 184.9 – 1.192

3 Fixed value 8600 8600 1.000 98.8 144.2 – 0.324

4 ICM inputs 8600 4780 0.556 98.2 148.8 – 0.423

5 Fixed value 16300 16300 1.000 99.0 142.4 – 0.288

6 ICM inputs 16300 9060 0.556 98.9 143.8 – 0.316

TABLE 5.7
Pavement structure used in MEPDG for site 4.

Layer # Layer Type Material Type Thickness (in) Resilient Modulus (psi)

1 Flexible Asphalt concrete 1.5 –

2 Flexible Asphalt concrete 3.0 –

3 Flexible Asphalt concrete 12.5 –

4 Subgrade A-6 (treated) 14.0 8,750

5 Subgrade A-6 Semi-infinite 3,000
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As described in section 4.4.4, the influence of the
treated layer plays an important role in the overall per-
formance of the pavement. This is investigated by analyz-
ing four different scenarios. The results are summarized
in Table 5.9. Scenarios 1–4 correspond to a 140 treated
layer with fixed MR of 8,750 psi and varying the
material type, i.e., A-6, A-5, A-4, and A-3 (reducing
PI and P200). The MR used for the A-6 subgrade is
3,000 psi (fixed value). Varying the material type of the
140 treated layer from A-6 to A-3 results in a ,9 in/mi
decrease in the IRI and additional 2.1 years lifespan
before failure.

6. CONCLUSIONS

At the beginning of 2009, INDOT adopted the
MEPDG method to study the long-term pavement per-
formance. The implementation of this new design
approach led to difficulties for the pavement to pass
the INDOT performance criteria; in particular pave-
ment roughness (IRI) for hot-mixed asphalt (HMA)
and faulting for jointed plain concrete pavement
(JPCP) when A-6 or A-7-6 soils were considered as
subgrade. This study is intended to find a practical
solution in INDOT pavement design procedures to
effectively determine the influence of the EICM input
parameters to predict the soil resilient modulus in
MEPDG. The ultimate goal of the research is to create
guidelines for selecting values of soil subgrade input
parameters in the EICM module in MEPDG. A total
of four sites located around the state of Indiana were

used to propose/validate the observations and con-
clusions made in the research. The study yielded the
following conclusions, which are grouped into three
concepts.

6.1 Influence of EICM Input Parameters and Factors
Controlling Pavement Performance

N For the climatic conditions existing in Indiana, the vari-

ation of the subgrade resilient modulus is independent of

the location of the water table. For A-7-6 soils, the

degree of saturation (.95%) will always be above the

optimal condition. Therefore, there will always be a

reduction of the resilient modulus. This reduction ranges

between 36% and 45% for a water table located between

2 ft to 100 ft below the surface, with the maximum

reduction (45%) observed when the water table is located

at 2 ft (saturated condition).

N A parametric study conducted to assess the influence of

the soil input parameters (cdmax, Gs, ksat, wopt, and Sopt)

on the SWCC shows that the gravimetric water content is

the most influential parameter on the EICM since it is

directly related to the optimum degree of saturation of

the subgrade soil.

N For A-7-6 soils, the foundation soil controls the overall

deformation of the pavement structure (,80% of total

deformation) as a result of its relatively low stiffness

compared to that of a lime or cement treated layer and of

the asphalt layer.

N The treated layer plays an important role in the overall

performance of the pavement. It controls the amount of

stress and deformation in the subgrade.

TABLE 5.8
Influence of subgrade resilient modulus for site 4.

# Analysis Type MR _opt (psi) MR (psi) MR/MR_opt

IRI

Reliability

(%)

IRI

at Reliability

(in/mi)

Failure

Year

Final Total

Rutting (in)

1 ICM inputs 3000 1654 0.551 71.06 186.53 12.5 0.867

2 ICM inputs 5442 3000 0.551 80.2 174.98 15.8 0.65

3 Fixed value 3000 3000 1.000 80.16 175.09 15.8 0.649

4 Fixed value 5500 5500 1.000 85.71 167.19 18.0 0.497

5 Fixed value 8500 8500 1.000 88.17 163.24 19.0 0.421

6 Fixed value 10000 10000 1.000 88.74 162.26 19.4 0.402

TABLE 5.9
Influence of treated layer material type for site 4.

# Material Type P200 (%) PI (%) LL (%) Sopt (%)

IRI Reliability

(%)

IRI at Reliability

(in/mi) Failure Year

Final Total Rutting

(in)

1 A-6 63.2 16 33 82.1 80.16 175.09 15.8 0.649

2 A-5 54.3 5 45 75.7 81.43 173.38 16.0 0.657

3 A-4 60.6 5 21 76.6 81.23 173.65 16.0 0.656

4 A-3 5.2 0 11 49.1 86.32 166.22 17.9 0.651
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6.2 Assessment of Current Subgrade Modeling
Approaches

N Current practice appears to produce a double reduction
of the subgrade modulus used for pavement design, since
the MR values provided as input to the software are not
those obtained at optimum moisture content, but are
reduced by the INDOT Geotechnical office to account
for the site conditions. A further reduction in MR is per-
formed within the EICM to account for the moisture
conditions at the site.

N Laboratory measurements of the MR for A-7-6 soils
obtained at optimum moisture content give average
values ranging between 10,000 psi and 16,000 psi (e.g.,
see Project SPR-3710 (Park, 2015) (SR-37, Mitchell,
Lawrence County, Vincennes)). These values are higher
than the reference value of 3,250 psi provided by the
INDOT Geotechnical office. Hence, it is necessary to
define which condition (i.e., at optimum or reduced) is
represented by the value of the resilient modulus given
by the Geotechnical Office and/or used as input in the
software.

N Current approaches for modeling treated soils neglect the
changes in the nature of the soils that arise with treat-
ment (i.e., an A-7-6 soil continues to be modeled as an
A-7-6 soil, albeit with a higher modulus, and thus is
susceptible to the same reduction in stiffness). Moreover,
the values of MR typically employed for treated A-6 and
A-7-6 soils (,9,000 psi, given by the INDOT geotechni-
cal office) fall on the low end of the range reported in the
literature (e.g., AASHTO, 2008).

6.3 Recommendations for Modeling of Subgrade

N Three approaches for modeling the subgrade can be
adopted:

1. Enable the EICM module and use as input a value of
MR that represents the optimum condition. This value

will then be reduced within the EICM to reflect actual
site conditions.

2. Disable the EICM module and introduce an input
MR that already accounts for moisture changes and
reflects the in situ conditions.

3. Disable the EICM module and introduce an input MR

with seasonal reduction that reflects the in situ
conditions.

N Changes of the subgrade MR due to seasonal variations
of the water table, modeled by placing it at 2, 4, 6, and
9 ft below the pavement surface, resulted in an average
reduction of ,43% that is almost constant during the
four seasons (winter, spring, summer, and fall). Hence, it
appears that the third approach, i.e., using seasonal
reduction, is less meaningful in Indiana and the first two
approaches seem more practical.

N Similar to the subgrade, the MR input into the MEPDG
for the treated layer should be a constant (i.e., not
affected by EICM) and with PI and P200 values that are
representative of the soil after treatment, given that the
fines content and plasticity of a chemically treated soil
tend to decrease with treatment.
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